非線性時間分數階反應擴散方程的一種新快速預估校正方法
首發時間:2022-06-11
摘要:時間分數階反應擴散(TFRD)方程是一類重要的分數階拋物型方程,其數值解法研究具有科學意義和工程應用價值。本文基于Caputo導數的快速L1插值逼近構造了一種快速預估校正(FP-C)格式,用于求解非線性TFRD方程,其中預估步采用線性化的隱式差分格式,校正步采用Crank-Nicolson(C-N)格式。理論分析證明了TFRD方程FP-C格式解的存在唯一性,FP-C格式的收斂性和無條件穩定性。數值分析及實驗都表明FP-C格式在強正則性條件下計算精度為 ,在弱正則性條件下計算精度為 。與經典預估校正(P-C)格式相比,FP-C格式在不損失計算精度的基礎上提高了計算效率,表明FP-C格式是一種求解TFRD方程的高效方法。
關鍵詞: 計算數學 非線性時間分數階反應擴散方程 快速預估校正方法 無條件穩定 收斂性 數值試驗
For information in English, please click here
A new fast predictor-corrector method for nonlinear time-fractional reaction-diffusion equation
Abstract:Time-fractional reaction-diffusion (TFRD) equation is an important fractional parabolic equation, and the research of its numerical solution has scientific significance and engineering application value. In the paper, a fast predictor-corrector (FP-C) scheme is constructed based on fast L1 interpolation approximation of Caputo fractional derivative for solving nonlinear TFRD equation. The linearized implicit difference scheme is used for the predictor step and Crank-Nicolson(C-N) scheme is used for the corrector step. Theoretical analysis proves that FP-C scheme solution exists and is unique, and FP-C scheme is convergent and stable unconditionally for nonlinear TFRD equation. Numerical analysis and experiments show that the computational accuracy of FP-C scheme is under strong regularity condition and under weak regularity condition. Compared with the classical predictor-corrector (P-C) scheme, the FP-C scheme improves the computational efficiency without losing the computational accuracy. It is shown that the FP-C scheme is an efficient method to solve TFRD equation.
Keywords: computational mathematics nonlinear time-fractional reaction-diffusion equation fast predictor-corrector method unconditional stability convergence numerical experiments
引用
No.****
動態公開評議
共計0人參與
勘誤表
非線性時間分數階反應擴散方程的一種新快速預估校正方法
評論
全部評論